كلية الطب البيطري

المزيد ...

حول كلية الطب البيطري

تأسست كلية الطب البيطري عام 1975م كأول كلية للطب البيطري في ليبيا. تعد الكلية من قلاع العلم و المعرفة الهامة بجامعة طرابلس ومؤسسة علمية تلبي إحتياجات المجتمع من الأطباء البيطريين وتساهم في دعم الإقتصاد الوطني من خلال العناية بصحة الحيوان وزيادة الإنتاج الحيواني والمحافظة على صحة الإنسان وحماية البيئة.

حقائق حول كلية الطب البيطري

نفتخر بما نقدمه للمجتمع والعالم

158

المنشورات العلمية

85

هيئة التدريس

245

الطلبة

23

الخريجون

من يعمل بـكلية الطب البيطري

يوجد بـكلية الطب البيطري أكثر من 85 عضو هيئة تدريس

staff photo

د. أبوبكر محمد ميلاد قرباج

أبوبكر قرباج هو احد اعضاء هيئة التدريس بقسم الرقابة الصحية على الاغذية بكلية الطب البيطري. يعمل السيد أبوبكر قرباج بجامعة طرابلس كـأستاذ 1992 وله العديد من المنشورات العلمية في مجال تخصصه

منشورات مختارة

بعض المنشورات التي تم نشرها في كلية الطب البيطري

Regulation of genomic imprinting at the human 11p15 region

The human 11p15 region is divided into two independent imprinted domains, the H19/IGF2 and CDKN1C/KCNQ1 domains. Each domain is regulated by its own imprinting control regions, ICR1 and ICR2, which carry opposite germline imprints. The expression of 11p15 imprinted genes is regulated by two major mechanisms. ICR1 binds a zinc finger protein (CTCF) on the unmethylated maternal allele and acts as a chromatin insulator, whereas ICR2 is unmethylated on the paternal allele and serves as a promoter for a regulatory non-coding RNA (KCNQ1OT1). Dysregulation of 11p15 genomic imprinting results in two human foetal growth disorders: the Beckwith-Wiedemann (BWS) and the Silver-Russell (SRS) syndromes, which display opposite growth phenotypes. Various 11p15 epigenetic and genetic defects result in BWS and SRS. Gain or loss of DNA methylation account for 60% of BWS and SRS and, in most cases, the mechanism of the DNA methylation defect is unknown. The overall aim of this thesis was to decipher the mechanisms resulting in loss or gain of DNA methylation at ICR1 or ICR2 by investigating large cohorts of BWS and SRS patients displaying a “primary” DNA methylation defect. We aimed at establishing what was the incidence of copy number variations (CNVs) (duplications, deletions and segmental uniparental isodisomies) confined to one or one part of the H19/IGF2 or CDKN1C/KCNQ1 domains. We also screened extensively the ICR1 imprinting control region in BWS and SRS patients to identify new genetic defects. We show in this work that genetic defects in cis account for a significant proportion (approximately 30%) of BWS patients with ICR1 gain of DNA methylation but are rare in SRS and BWS patients with loss of DNA methylation at ICR1 and ICR2, respectively. We describe novel small gain and loss CNVs involving only part of the two domains in BWS and SRS. We also describe, for the first time, mutations and small deletions involving binding sites for the OCT4 and SOX2 pluripotency factors. Those defects account for approximately 14% of BWS cases and result in a BWS phenotype upon maternal transmission. We further characterize the role of OCT4/SOX2 pluripotency factors in the maintenance of genomic imprinting at the H19/IGF2 domain in mouse embryonic stem cells. By screening the whole 11p15 region for susceptibility alleles for loss or gain of DNA methylation, our group identified a novel 4.5 kb cis-regulatory region within the CDKN1C/KCNQ1 domain. A specific 4.5 kb haplotype confers, upon maternal transmission, a risk of ICR2 loss of DNA methylation in BWS patients. This study investigated the mechanism involved in the risk of ICR2 loss of DNA methylation in BWS and showed that within this 4.5 kb region, two SNPs (rs11823023 and rs179436) affect CTCF occupancy at DNA motifs flanking the CTCF 20 bp core motifs. This study identifies a new cis-regulatory region and highlights the crucial role of CTCF for the regulation of genomic imprinting at the CDKN1C/KCNQ1 domain. These recent findings bring new insights in the regulation of genomic imprinting at both the IGF2/H19 and CDKN1C/KCNQ1 domains. arabic 8 English 50
Mansur Ennuri Moftah Shmela(9-2014)
Publisher's website

Carpal Morphometry in Normal Horses and Horses with Carpal Bone Pathology

Relationships between carpal morphology and carpal pathology might assist in identifying horses at risk of carpal pathology. This study was aimed to investigate the hypothesis that carpal morphology is related to the incidence of carpal pathology in racing Thoroughbreds. Ten carpal parameters were used to measure carpal morphology on dorsopalmar (DP) carpal radiographs. Radiographs were collected from 19 experienced Thoroughbred race horses with no evidence of carpal damage(normal)and 72 horses with carpal damage (clinical). All radiographs were at a defined position called zero degrees (ZDP) or within an acceptable rotational range. Based on a P-value of < 0.05 and using the false discovery rate method to control Type I error, two parameters showed significant differences between normal and clinical horses. The angulation of the radial metaphysis and distal radius in relation to the angulation of the radial facet of the third carpal bone (C3) was significantly related to the occurrence of pathology in the bones of the middle carpal joint in Thoroughbred race horses. This study presented important features on DP radiographs that allowed identification of a carpal conformation associated with carpal damage in Thoroughbred race horses. Using such a highly specific, cost-effective and safe technique as a routine for examining yearling Thoroughbreds would assist in identifying horses with carpal conformation unsuited to racing.
Aiman Hussein Saleh Oheida, Abdulrhman Mohamed Salah Alrtib, Mohamed Hamrouni S. Abushhiwa, Christopher J. Philip, Helen M.S. Davies(1-2022)
Publisher's website

Detection of suspected DNA avian circovirus in commercial turkey flocks

as attached
Abdulwahab Kammon(1-2010)
Publisher's website

قناة كلية الطب البيطري

بعض الفيديوات التي تعرض مناشط كلية الطب البيطري

اطلع علي المزيد